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APPENDIX A
Technical Notes

A.1 BINOMIAL DISTRIBUTION

A coin toss is an example of a Bernoulli trial, a random experiment with two
possible outcomes. The coin is not necessarily stipulated to be “fair.” The
probability of heads can be equal to any π ∈ [0, 1]. If we assign the value
Y = 1 to one of the outcomes of the Bernoulli trial and the value Y = 0 to
the other, we say that Y follows a Bernoulli distribution with parameter π .

Suppose we repeat a Bernoulli trial n times and add up the resulting
values of Yi , i = 1, . . . , n. Successive trials are independent. The random
variable X = ∑n

i=1 Yi is said to follow a binomial distribution with param-
eters π and n. We have

E [X] = nπ

Var[X] = nπ (1 − π )

The Bernoulli and binomial distributions are both discrete distributions.
But the binomial distribution converges to the normal distribution as the
number of trials n grows larger. This convergence result is an application
of the central limit theorem. Specifically, if we standardize a binomially dis-
tributed random variable X, we can get its probability distribution arbitrarily
close to that of a standard normal variate by increasing n enough:

P

[
X − nπ√
nπ (1 − π )

≤ z

]
→ �(z) as n → ∞

This book uses the binomial distribution in two applications, to analyze
the probability distribution of the terminal state of a random walk (Chap-
ter 2) and to characterize the distribution of credit losses in a portfolio of
identical, uncorrelated credits (Chapter 8). In the case of the random walk,
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F IGURE A.1 Convergence of Binomial to Normal Distribution
The plots display the probability density of Xn, the terminal position of a random
walk over an interval of length 1, with n = 4, 16, 64 time steps. The upper two
rows of graphs set π = 0.05 and π = 1

4 . The distributions are not symmetrical, but
converge to a symmetrical normal distribution. The lower row of graphs uses
π = 1

2 , and all three distributions in the row are symmetrical.

we use convergence to the normal distribution to show that the discrete-step
random walk converges to a continuous Brownian motion. Figure A.1 illus-
trates. Notice that if the probability of the Bernoulli trial is not equal to 0.5,
the binomial distribution is skewed for small n. But as n grows larger, the
skewness disappears. In the credit context, convergence is used to derive an
approximation to the distribution of losses in a credit portfolio.

A.2 QUANTILES AND QUANTILE
TRANSFORMATIONS

Suppose we have a random variable X. A p-th quantile of X is a number
Qp(X) such that P

[
X < Qp(X)

] ≤ p. We can define quantiles in terms of
the cumulative distribution function F (X). The p-th quantile is the value of
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X such that, for any x < Qp(X),

F (x) ≤ p

Every probability distribution has an inverse probability distribution
function or quantile function. If X is a continuous random variable, with a
cumulative distribution function (CDF) that is monotone increasing in X,
we can define the quantile more simply. The p-th quantile is then a number
Qp(X) such that P

[
X < Qp(X)

] = p. It is equal to the value of the inverse
function of the CDF, evaluated at p:

Qp(X) = F −1(p)

The most commonly mentioned quantile is the 0.5 quantile, or the me-
dian. If X is a random variable, there is a probability of 1

2 of realizing a value
of X less than or equal to the median. The “p” in “p-th quantile” is com-
monly expressed as a percent, and the quantile is then called a percentile. A
familiar example comes from the standard normal distribution. The median
of the standard normal is zero, equal to its mean. The 0.01 quantile or first
percentile of the standard normal is about 2.33.

We use quantile functions in a number of applications, including sim-
ulation, in applying copulas (Chapters 8 and 9), and in understanding risk
neutral probability distributions (Chapter 10). The probability distribution
tells us, for any value x of a random variable X, what the probability is of
X having a realization that is less than or equal to x, that is, P [X ≤ x]. The
quantile function tells us, for any p ∈ [0, 1], what is the value of x such that
p = P [X ≤ x].

The most common approach to obtaining random variates with a de-
sired probability distribution applies the quantile transformation or inver-
sion principle. This principle exploits the fact that the cumulative probabil-
ities F (X) of a random variable X are uniform-[0, 1] distributed.

By the same token, values of the quantile function, applied to the
uniform-[0, 1] variates, have the original distribution. Both the domain of
a uniform random variable and the probabilities lie on [0, 1]; the domain
of the uniform random variable happens to be the range of any cumulative
distribution function. The inversion principle states: If we have a uniform
distribution value, we can transform it into the value of another distribution
F (X) by finding the value for which that other distribution has a probabil-
ity equal to the uniform distribution value. If U represents a uniform-[0, 1]
variate, the random variable F −1(U) has the same distribution function as
X, namely F (X).
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A.3 NORMAL AND LOGNORMAL DISTRIBUTIONS

A.3.1 Relat ionship between Asset Price Levels
and Returns

The lognormal distribution is defined as the probability distribution of a
random variable y with a logarithm that is normally distributed. If log(y) ∼
N(a, b), then y has a lognormal distribution with parameters a and b. Those
parameters, though, are not the mean and standard deviation of y.

We use the lognormal distribution to relate changes in the level of
an asset price to its logarithmic returns. We want to find the probability
distributions, at some future time t + τ , of

� the asset price level St+τ

� the change in price St − St+τ

� the logarithmic return log
(

St+τ

St

)

Typically, we have a reasonable assumption about the mean of the future
price E [St+τ ], based on the forward or futures price, or on a price fore-
cast, and a reasonable assumption about the annualized volatility σ of the
logarithmic return, based on historical or implied volatility.

How do we match these distributions and parameters? The expected
discrete rate of return that “grows” log(St) to its time t + τ mean E[St+τ ] in
a straight line is the μ that satisfies

E [St+τ ] = Steμτ

But there is noise along the path; St has a volatility. The expected constant
logarithmic rate of return that gets St to E [St+τ ] is not μ, but μ − σ 2

2 :

1
τ

log
(

E [St+τ ]
St

)
= μ − σ 2

2

Reducing the rate of return by σ 2

2 just offsets the asymmetric, growth-
increasing impact of volatility combined with compounding described in
Chapter 2. The logarithmic rate of return is therefore distributed as

log
(

St+τ

St

)
∼ N

[(
μ − σ 2

2

)
τ, σ

√
τ

]
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implying that

log
(

St+τ

St

)
−

(
μ − σ 2

2

)
τ

σ
√

τ
∼ N(0, 1)

By the definition of a lognormal random variable, we thereby establish

that the distribution of St+τ − St is lognormal with parameters
(
μ − σ 2

2

)
τ

and σ
√

τ . Shifting the mean of the logarithmic return by log(St), the distri-

bution of St+τ is lognormal with parameters log(St) +
(
μ − σ 2

2

)
τ and σ

√
τ .

In general, if y has a lognormal distribution with parameters a and b,

then E [y] = ea+ b2
2 . The mean of the distribution of St+τ − St is therefore eμτ

and that of St+τ is Steμτ .
We can also match up the quantiles of these distributions. The p-th

quantile of the lognormal distribution equals St times the exponential of the
p-th quantile of the corresponding normal distribution, or

Ste
(
μ− σ2

2

)
τ+σ

√
τ z with �(z) = p

The cumulative probability distribution function of log
(

St+τ

St

)
is

�

⎡
⎣ log

(
St+τ

St

)
−

(
μ − σ 2

2

)
τ

σ
√

τ

⎤
⎦

A.3.2 The Black-Scholes Distr ibut ion Funct ion

We can use these relationships to interpret the Black-Scholes delta and other
sensitivities under the risk-neutral probability distribution. In the Black-
Scholes model, the future asset price follows a lognormal distribution, and

the logarithmic return log
(

St+τ

St

)
follows a normal distribution. What are

the parameters of those risk-neutral distributions?
Suppose we have an asset with a current price of St, paying a risk-free,

constant, and continuous dividend at a rate q. The constant and continuously
compounded risk-free rate is r . The forward price Ft,τ is equal to the mean
of the future price under the risk-neutral distribution:

Ẽ [St+τ ] = Ste(r−q)τ = Ft,τ
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If σ is the implied volatility, r − q − σ 2

2 is the risk-neutral mean of the
logarithmic return and σ

√
τ its risk-neutral standard deviation. This sets the

parameters of the risk-neutral time t + τ asset price and return distributions,
which we can express as

log
(

St+τ

St

)
−

(
r − q − σ 2

2

)
τ

σ
√

τ
∼ N(0, 1)

With the derivations just above, we can summarize as follows:

� The risk-neutral probability distribution of the future asset price level

St+τ is lognormal, with parameters log(St) +
(
r − q − σ 2

2

)
τ and σ

√
τ .

� The risk-neutral probability distribution of the change in price St − St+τ

is lognormal, with parameters
(
r − q − σ 2

2

)
τ and σ

√
τ .

� The risk-neutral probability distribution of the logarithmic return

log
(

St+τ

St

)
is normal, with mean

(
r − q − σ 2

2

)
τ and standard deviation

σ
√

τ .

How do these distributions relate to the Black-Scholes formulas? The
Black-Scholes model values for European puts and calls are:

v(St, σ, r, q) = Ste−qτ�

⎡
⎣ log

( St
X

) +
(
r − q + σ 2

2

)
τ

σ
√

τ

⎤
⎦

− Xe−rτ�

⎡
⎣ log

( St
X

) +
(
r − q − σ 2

2

)
τ

σ
√

τ

⎤
⎦

w(St, τ, X, σ, r, q) = Xe−rτ�

⎡
⎣−

log
( St

X

) +
(
r − q − σ 2

2

)
τ

σ
√

τ

⎤
⎦

− Ste−qτ�

⎡
⎣−

log
( St

X

) +
(
r − q + σ 2

2

)
τ

σ
√

τ

⎤
⎦
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The Black-Scholes call delta is

δc,t ≡ ∂

∂St
v(St, τ, X, σ, r, q) = e−qτ�

⎡
⎣ log

( St
X

) +
(
r − q + σ 2

2

)
τ

σ
√

τ

⎤
⎦

The derivative of the Black-Scholes formula for the value of a European call
with respect to the exercise price is less commonly used than the delta. We’ll
denote this “exercise price delta” by χc,t:

χc,t ≡ ∂

∂ X
v(St, τ, X, σ, r, q) = −e−rτ�

⎡
⎣ log

( St
X

) +
(
r − q − σ 2

2

)
τ

σ
√

τ

⎤
⎦

Multiplying the value at which the normal CDF is evaluated by −1, we have

erτ χc,t = −
⎧⎨
⎩1 − �

⎡
⎣ log

(
X
St

)
−

(
r − q − σ 2

2

)
τ

σ
√

τ

⎤
⎦

⎫⎬
⎭

We showed in Chapter 10 that χc,t is related to the risk-neutral CDF by

	̃(X) = 1 + erτχc,t

Now we can see that in the specific case of the Black-Scholes model,

the risk-neutral distribution of St+τ is lognormal, and that log
(

St+τ

St

)
is a

normally distributed random variable with CDF

	̃(X) = �

⎡
⎣ log

(
X
St

)
−

(
r − q − σ 2

2

)
τ

σ
√

τ

⎤
⎦

Example A.1 Let’s take the dollar-euro exchange rate as an example. Sup-
pose the current spot rate is 1.25 per euro, that the dollar and euro one-year
funding rates are both 1 percent, and that the one-year implied volatility
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F IGURE A.2 The Black-Scholes Probability Density Function
The market-based parameters are as given in Example A.1. The grid lines are
Q0.01 0.01 quantile of St+τ 0.769414
X0.25 Exercise price of 25-δ call 1.45942
Q0.50 Median or 0.50 quantile of St+τ 1.22525
Ẽ [St+τ ] Expected value of St+τ 1.25
X0.50 Exercise price of 50-δ call, or expected value of St+τ

conditional on exceeding 0.50 quantile 1.27525
X0.75 Exercise price of 75-δ call 1.11432
Q0.99 0.99 quantile of St+τ 1.95114

is 20 percent. What is the risk-neutral distribution of the exchange rate in
one year?

The one-year forward rate and the risk-neutral mean are both 1.25. The
quantiles of the distribution are

Probability Quantile
0.001 0.6604
0.01 0.7694
0.5 1.2253
0.99 1.9511
0.999 2.2732

Figure A.2 plots the exchange rate distribution in one year. Note that the
median is below the mean. This is typical for continuous unimodal (“one-
humped”) probability distributions. We’ve assumed a lognormal distribu-
tion, which is skewed to the right, so the mean is to the right of the median.
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A.4 HYPOTHESIS TESTING

In the standard approach to statistical hypothesis testing, we start with
a statement about the parameters of a statistical distribution, called the
null hypothesis, denoted H0. The null hypothesis is then tested against the
alternative hypothesis, which can be the statement that the null hypothesis is
not true, or a more specific hypothesis. The null or the alternative hypothesis
is called a simple or point hypothesis if it states that the parameter is equal
to a particular value.

For example, we might stipulate that the physical heights of a human
population are normally distributed with a standard deviation of 5 inches,
and formulate the simple null hypothesis that the mean height is 72 inches.
The next step is then to devise a test procedure for determining whether we
will accept the null hypothesis. Typically, using a sample of data from the
population, we can calculate a test statistic. The test procedure is framed
so that, if the null hypothesis is true, we can determine the probability
distribution of the test statistic. Given the distribution of the test statistic,
we can determine the probability with which the test statistic takes on any
particular value. If the sample leads to a value of the test statistic that is
highly unlikely, we will be inclined to reject the null hypothesis.

Continuing our physical height example, we can calculate a sample mean
N−1 ∑N

n=1 hn by measuring the heights hn of N randomly chosen individuals.
Since we have stipulated that the population’s distributional family is normal
and its standard deviation is σ = 5 inches, the test statistic

√
NN−1 ∑N

n=1(hn − μ)
σ

where μ is the hypothesized population mean, is a standard normal variate.
Note that the distributional family and standard deviation are maintained
hypotheses, which we are not testing. The maintained hypotheses drive the
probability distribution of the test statistic, while the data drive the value
it takes on in our particular case. The z-test, which uses a standard normal
as a test statistic, is appropriate here; if we used the sample rather than
population standard deviation, and had a relatively small sample, we would
prefer to use a t-test. The null hypothesis is

H0 : μ = 72

We’ll test the null against the alternative hypothesis that the mean is

H1 : μ 	= 72
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Suppose our sample consists of N = 10 individuals, with a sample mean of
70 inches. The value of the test statistic is then

√
10(70 − 72)

5
= −1.265

To complete the test procedure, we need to establish criteria for accept-
ing or rejecting the null hypothesis. This is not a matter of mathematics or
science, but rather of the relative penalty we want to place on two types of
error, mistakenly accepting the null even though it is false, or mistakenly re-
jecting the null even though it is true, known respectively as Type I and Type
II errors. There is an unavoidable trade-off: If we reduce the probability of
a Type I error, we increase the probability of a Type II error, and vice versa.

The test criteria can be expressed by dividing the range of possible values
of the test statistic we are testing into two regions. If the test statistic falls in
the critical region, we reject the null hypothesis, and if the test statistic falls in
the acceptance region, we do not reject the null hypothesis. In our example,
we are carrying out a two-sided test, since the alternative hypothesis is an
inequality. At a conventional significance level of, say, 5 percent, we would
reject the null is the test statistic fell outside the range (−1.96, +1.96). Our
test statistic value of −1.265 is comfortably within the range, so we do not
reject the null.

A.5 MONTE CARLO SIMULATION

Once we have a probability distribution, we could in principle use it to
describe random outcomes algebraically. This is not, however, the way it
is actually done in practice. More often than not, quantitative results are
derived by simulation.

Why? Often, the random variables involved, say, asset returns or default
times, are complicated functions of the underlying random drivers that we
are confident we can model. The algebra needed to describe the distribution
we are interested in may be too complicated.

Simulation is in a way a brute-force approach that cuts through the
algebra and goes straight from what we think we know about the underlying
drivers to the distribution of the random outcomes. It is often easier or more
accurate. In this appendix, we outline the basics of how this is done. In
Chapters 3 through 6, 8, and 9, we apply simulation to concrete market and
credit risk measurement problems.

Monte Carlo simulation is one approach to estimating distributions. It
comprises three stages:



P1: a/b P2: c/d QC: e/f T1: g

JWBT440-bapp-a JWBT440-Malz August 18, 2011 8:13 Printer: To Come

Appendix A: Technical Notes 663

1. We generate random variates according to the distributional hypotheses
that we believe govern the terminal value of the portfolio.

2. The model transforms the raw random data in some way. In market risk
applications, we may have a pricing model. In credit risk applications,
we may have a model that values the outcomes of credit events.

3. The results of the simulation are a set of Monte Carlo realizations (also
called replications or threads). The realizations have a distribution that
can be described by its sample statistics, such as mean and variance. In
risk measurement, we are usually interested in low quantiles such as the
first percentile or the 0.01 quantile.

A.5.1 Fooled by Nonrandomness:
Random Variable Generat ion

The first step in generating random variates is to generate uniformly dis-
tributed random numbers, that is, equiprobable real numbers on [0, 1]. In
a later step, we transform these into random variates that follow other
distributions.

There are two ways to generate uniform randoms. The first is to use a
physical process, such as radioactive decay or flipping a coin. It is unusual to
use physical techniques, because we often need many random numbers and
it is both expensive and time-consuming to accurately generate and record
physically generated ones.

The second, more typical, approach is to use pseudo random numbers.
As the name indicates, pseudo random numbers are not truly random, the
way the results of physical random processes can be. Rather, they are de-
terministic, since they are generated by algorithms. The main advantage of
pseudo random numbers is that, since computing power is now so cheap,
they are cheap to produce.

An example of a pseudo random number generator is

Ij+1 = 1
231 − 1

[75 Ij mod (231 − 1)]

where x mod (y) denotes the remainder obtained on dividing x by y. For
example, 3 mod (3) = 0 and 4 mod (3) = 1. This type of pseudo random
number generator is called a linear congruential generator.

The initial value I0 is provided by the user (or automatically by the
computer or the high-level application, for example, by setting it equal to
the computer’s internal clock time) and is called the random seed. Because
the pseudo random number generator is deterministic, for a given seed, a
sequence of N random numbers will always be identical. This is another
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advantage of pseudo random numbers: The results can always be replicated
exactly, realization by realization, by reusing the seed.

Pseudo random number generators can be evaluated by testing their
outputs for whether they are close to truly random: for example, to see if
there is repetition or if the realizations are serially correlated.

A.5.2 Generat ing Nonuni form Random Variates

Once we have a set of uniform random numbers, we turn them into ran-
dom numbers drawn from the distribution we are really interested in. The
inversion or transformation principle cited above tells us that the range of a
distribution function follows a uniform distribution. Therefore, if we have
a uniform distribution value, we can transform it into the value of another
distribution by finding its quantile, that is, the value for which that other
distribution has a probability equal to the uniform distribution value. In this
way, once we have generated a set of uniform-[0, 1] variates, we can use the
results to generate a random sample from any other distribution.

Figure A.3 illustrates this approach for the standard normal distribution.
It plots the quantile function z = �−1(u), which maps real numbers on [0, 1]
to a real number on (−∞, ∞) such that u = �(z). The graph also displays
200 pseudo random uniform-[0, 1] variates. As the number of simulations
grows, the simulations trace out the target, normal, distribution as precisely
as desired.

A.6 HOMOGENEOUS FUNCTIONS

A function f (x1, . . . , xnN) is homogeneous of degree p if ∀t ≥ 0,

f (tx1, . . . , txN) = t p f (x1, . . . , xN) (A.1)

The partial derivatives of functions homogeneous of degree p are homoge-
neous of degree p − 1:

∂ f (x1, . . . , xN)
∂xn

= t p−1 ∂ f (x1, . . . , xN)
∂xn

, n = 1, . . . , N

To see this, differentiate (A.1) w.r.t. any of the xn:

∂ f (tx1, . . . , txN)
∂xn

= t
∂ f (tx1, . . . , txN)

∂xn
= t p ∂ f (x1, . . . , xN)

∂xn
n = 1, . . . , N
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F IGURE A.3 Transforming Uniform into Normal Variates
The plot in the upper panel represents the inverse standard normal distribution.
The points represent 50 simulated values of the uniform distribution. The lower
panel plots the results of generating 200 standard normal variates. Each point has
coordinates ui , �

−1(ui ), i = i, . . . , 200.

The first equality differentiates the left-hand side of Equation (A.1) using
the chain rule, while the expression following the second equality is the
derivative of the right-hand side. Dividing both sides by t gives the result.

Homogeneous functions of degree p have the Euler property:

N∑
n=1

xn
∂ f (x1, . . . , xN)

∂xn
= pf (x1, . . . , xN)
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For example, the weighted sum of the partial first derivatives of a linearly ho-
mogeneous function, with the weights set equal to the value of the function’s
arguments, is equal to the value of the function itself.

To prove this, differentiate (A.1) w.r.t. t. Using the chain rule to differ-
entiate w.r.t. the txn, we have

∂ f (tx1, . . . , txN)
∂t

= ∂ f (tx1, . . . , txN)
∂txn

∂(txn)
∂t

= xn
∂ f (tx1, . . . , txN)

∂xn

n = 1, . . . , N

Therefore, differentiating both sides of (A.1) w.r.t. t gives

N∑
n=1

xn
∂ f (tx1, . . . , txN)

∂xn
= pt p−1 f (x1, . . . , xN)

Since this is true for all t, it is also true for t = 1, giving the result.

FURTHER READING

Most of the material in this Appendix is reviewed in intermediate text-
books on probability and statistics. Pfeiffer (1990) and Wasserman (2004)
stand out for clarity of presentation. The lognormal distribution is covered
in option textbooks such as Hull (2000). The explication in Jarrow and
Rudd (1983) is particularly lucid. Numerical techniques and simulation are
covered in Stoer and Bulirsch (1993).


